Weld Failure Analysis. Only rarely are there failures of welded structures, but failures of large engineered structures do occur occasionally. Catastrophic failures of major structures are usually reported whenever they occur. The results of investigations of these failures are usually reported and these reports often provide information that is helpful in avoiding future similar problems. In the same manner, there are occasional failures of noncritical welds and weldments that should also be investigated. Once the reason is determined it can then be avoided. An objective study must be made of any failure of parts or structures to determine the cause of the failure. This is done by investigating the service life, the conditions that led up to the failure, and the actual mode of the failure. An objective study of failure should utilize every bit of information available, investigate all factors that could remotely be considered, and evaluate all this information to find the reason for the failure. Failure investigation often uncovers facts that lead to changes in design, manufacturing, or operating practice, that will eliminate similar failures in the future. Failures of insignificant parts can also lead to advances in knowledge and should be done objectively, as with a large structure. Each failure and subsequent investigation will lead to changes that will assure a more reliable product in the future.

The following four areas of interest should be investigated when performing  weld failure analysis in order to determine the cause of failure and the interplay of factors involved:

Initial observation. The detailed study by visual inspection of the actual component that failed should be made at the failure site as quickly as possible. Photographs should be taken, preferably in color, of all parts, structures, failure surfaces, fracture texture appearance, final location of component debris, and all other factors. Witnesses to the failure should all be interviewed and all information determined from them should be recorded.

Background data. Investigators should gather all information concerning specifications, drawings, component design, fabrication methods, welding procedures, weld schedules, repairs in and during manufacturing and in service, maintenance, and service use. Efforts should be made to obtain facts pertinent to all possible failure modes. Particular attention should be given to environmental details, including operating temperatures, normal service loads, overloads, cyclic loading, and abuse.

Laboratory studies. Investigators should make tests to verify that the material in the failed parts actually possesses the specified composition, mechanical properties, and dimensions. Studies should also be made microscopically in those situations in which it would lead to additional information. Each failed part should be thoroughly investigated to determine what bits of information can be added to the total picture. Fracture surfaces can be extremely important. Original drawings should be obtained and marked showing failure locations, along with design stress data originally used in designing the product. Any other defects in the structure that are apparent, even though they might not have contributed to the failure, should also be noted and investigated.

Weld Failure assumptions. The investigator should list not only all positive facts and evidence that may have contributed to the failure, but also all negative responses that may be learned about the failure. It is sometimes important to know what specific things did not happen or what evidence did not appear to help determine what happened. The data should be tabulated and the actual failure should be synthesized to include all available evidence.

Weld failure cause can usually be classified in one of the following three classifications:

  1. Failure due to faulty design or misapplication of material.
  2. Failure due to improper processing or improper workmanship.
  3. Failure due to deterioration during service.

The following is a summary of the above three situations

(1) Failure due to faulty design or misapplication of the material involves failure due to inadequate stress analysis, or a mistake in design such as incorrect calculations on the basis of static loading instead of dynamic or fatigue loading. Ductile failure can be caused by a load too great for the section area or the strength of the material. Brittle fracture may occur from stress risers inherent in the design, or the wrong material may have been specified for producing the part.

(2) Failures can be caused by faulty processing or poor workmanship that may be related to the design of the weld joint, or the weld joint design can be proper but the quality of the weld is substandard. The poor quality weld might include such defects as undercut, lack of fusion, or cracks. Failures can be attributed to poor fabrication practice such as the elimination of a root opening, which will contribute to incomplete penetration. There is also the possibility that the incorrect filler metal was used for welding the part that failed.

(3) Failure due to deterioration during service can cause overload, which may be difficult to determine. Normal wear and abuse to the equipment may have result-ed in reducing sections to the degree that they no longer can support the load. Corrosion due to environmental conditions and accentuated by stress concentrations will contribute to failure. In addition, there may be other types of situations such as poor maintenance, poor repair techniques involved with maintenance, and accidental conditions beyond the user’s control. The product might be exposed to an environment for which it was not designed.

Conclusion. Examination of catastrophic and major failures has led the welding industry to appreciate the following facts:

(1) Weldments are monolithic in character.

(2) Anything welded onto a structure will carry part of the load whether intended or not.

(3) Abrupt changes in section, either because of adding a deckhouse or removing a portion of the deck for a hatch opening, create stress concentration. Under normal loading, if the steel at the point of stress concentration is notch sensitive at the service temperature, failure can result.