*** Steels used for making tools***, punches, and dies are perhaps the hardest, strongest, and toughest steels used in industry. In general, tool steels are medium to high carbon steels with specific elements included in different amounts to provide special characteristics. A spark test shows a moderately large volume of white sparks having many fine, repeating bursts.
Carbon is provided in tool steel to help harden the steel for cutting and wear resistance. Other elements are added to provide greater toughness or strength. In some cases, elements are added to retain the size and shape of the tool during its heat treat hardening operation, or to make the hardening operation safer and to provide red hardness so that the tool retains its hardness and strength when it becomes extremely hot. Iron is the predominant element in the composition of tool steels. Other elements added include chromium, cobalt, manganese, molybdenum, nickel, tungsten, and vanadium. The tool or die steels are designed for special purposes that are dependent upon composition. Certain tool steels are made for producing die blocks; some are made for producing molds, others for hot working, and others for high-speed cutting application.
Another way to classify tool steels is according to the type of quench required to harden the steel. The most severe quench after heating is the water quench (water-hardening steels). A less severe quench is the oil quench, obtained by cooling the tool steel in oil baths (oil-hardening steels). The least drastic quench is cooling in air (air-hardening steels).
Tool steels and dies can also be classified according to the work that is to be done by the tool. This is based on class numbers.
(3) Class III steels are used to make tools that act upon the material being worked by partially or wholly reforming it without changing the actual dimensions. This includes bending dies, folding dies, and twisting dies.
(4) Class IV steels are used to make dies that work under heavy pressure and that produce a flow of metal or other material caressing it into the desired form. This includes crimping dies, embossing dies, heading dies, extrusion dies, and staking dies.
Steels in the tool steels group have a carbon content ranging from 0.83 to 1.55 percent. They are rarely welded by arc welding because of the excessive hardness produced in the fusion zone of the base metal. If arc welding must be done, either mild steel or stainless steel electrodes can be used.
Uniformly high preheating temperatures (up to 1000°F (583°C)) must be used when welding tool steels.
In general, the same precautions should be taken as those required for welding high carbon steels. The welding flare should be adjusted to carburizing to prevent the burning out of carbon in the weld metal. The welding should be done as quickly as possible, taking care not to overheat the molten metal. After welding, the steel should be heat treated to restore its original properties.
Drill rods can be used as filler rods because their high carbon content compares closely with that of tool steels.
A flux suitable for welding cast iron should be used in small quantities to protect the puddle of high carbon steel and to remove oxides in the weld metal.
Tool Steels Welding Technique
When welding tool steels, the following techniques should be kept in mind:
When welding with stainless steel electrodes, the edge of the plate should be preheated to prevent the formation of hard zones in the base metal. The weld metal should be deposited in small string beads to keep the heat input to a minimum. In general, the application procedure is the same as that required for medium and high carbon steels.
There are four types of die steels that are weld repairable. These are water-hardening dies, oil-hardening dies, air-hardening dies, and hot work tools. High-speed tools can also be repaired.