The oxyacetylene welding torch is used to mix oxygen and acetylene in definite proportions. It also controls the volume of these gases burning at the welding tip, which produces the required type of flame. The torch consists of a handle or body which contains the hose connections for the oxygen and the fuel gas. The torch also has two needle valves, one for adjusting the flew of oxygen and one for acetylene, and a mixing head. In addition, there are two tubes, one for oxygen, the other for acetylene; inlet nipples for the attachment of hoses; a tip; and a handle. The tubes and handle are of seamless hard brass, copper-nickel alloy, stainless steel. For a description and the different sized tips, see paragraph 5-10.

Types of Oxyacetylene Welding Torches. There are two general types of welding torches; the low pressure or injector type, and the equal pressure type.

In the low pressure or injector type (fig. 5-10), the acetylene pressure is less than 1 psi (6.895 kPa). A jet of high pressure oxygen is used to produce a suction effect to draw in the required amount of acetylene. Any change in oxygen flow will produce relative change in acetylene flow so that the proportion of the two gases remains constant. This is accomplished by designing the mixer in the torch to operate on the injector principle. The welding tips may or may not have separate injectors designed integrally with each tip.

Mixing head for injector type oxyacetylene welding torch.

 The equal pressure torch (fig. 5-11) is designed to operate with equal pressures for the oxygen and acetylene. The pressure ranges from 1 to 15 psi (6.895 to 103.4 kPa). This torch has certain advantages over the low pressure type. It can be more readily adjusted, and since equal pressures are used for each gas, the torch is less susceptible to flashbacks.

General purpose oxyacetylene welding torch.

Oxyacetylene Welding Torch Tips and Mixers

The Oxyacetylene welding torch tips (fig. 5-10 and 5-11) are made of hard drawn electrolytic or 95 percent copper and 5 percent tellurium. They are made in various and types, some having a one-piece tip either with a single orifice or a of orifices. The diameters of the tip orifices differ in order to control the quantity of heat and the type of flame. These tip sizes are designated by numbers which are arranged according to the individual manufacturer’s system. Generally, the smaller the number, the smaller the tip orifice.

Oxyacetylene welding torch mixers (fig. 5-10 and 5-11) are frequently provided in tip tier assemblies which assure the correct flow of mixed gases for each size tip. In this tip mixer assembly, the mixer is assembled with the tip for which it has been drilled and then screwed onto the torch head. The universal type mixer is a separate unit which can be used with tips of various sizes.

Oxyacetylene Welding Torch Hose

The hoses used to make the connection between are made especially for this purpose.

  1. Hoses are built to withstand high internal the regulators and the torch pressures.
  2. They are strong, nonporous, light, and flexible to permit easy manipulation of the torch.
  3. The rubber used in the manufacture of hose is chemically treated to remove free sulfur to avoid possible spontaneous combustion.
  4. The hose is not impaired by prolonged exposure to light.


Oxyacetylene welding torch hose should never be used for one gas if it was previously used for another.

Oxyacetylene welding torch hose identification and composition.

In North America, the oxygen hose is green and the acetylene hose is red. In Europe, blue is used for oxygen and orange for acetylene. Black is sometimes also used for oxygen.

The hose is a rubber tube with braided or wrapped cotton or rayon reinforcements and a rubber covering. For heavy duty welding and cutting operations, requiring 1/4-to 1/2-in. internal diameter hose, three to five plies of braided or wrapped reinforcements are used. One ply is used in the 1/8-to 3/16-in. hose for light torches.

Oxyacetylene welding torch hoses are provided with connections at each end so that they may be connected to their respective regulator outlet and torch inlet connections. To prevent a dangerous interchange of acetylene and oxygen hoses, all threaded fittings used for the acetylene hook up are left hand, and all threaded fittings for the oxygen hook up are right hand. Notches are also placed on acetylene fittings to prevent a mixup.d. Welding and cutting hoses are obtainable as a single hose for each gas or with the hoses bonded together along their length under a common outer rubber jacket. The latter type prevents the hose from kinking or becoming tangled during the welding operation.