Expansion and Contraction in Welding Operations

Most welding processes involve heat. High-temperature heat is responsible for much of the expansion and contraction in welding operations,  because warpage and stress occurs. When metal is heated, it expands in all direction. When metal cools, it contracts in all directions. Some distortions caused by weld shrinkage are shown in the figure above.

There is a direct relationship between the amount of temperature change and change in dimension. This is based on the coefficient of thermal expansion. Thermal expansion is a measure of the linear increase in unit length based on the change in temperature of the material. The coefficient of expansion for the various metals. Aluminum has one of the highest coefficient of expansion ratios, and changes in dimension almost twice as much as steel for the same temperature change.

A metal expands or contracts by the same amount when heated or cooled the same temperature if it is not restrained. If the expansion of the part being welded is restrained, buckling or warping may occur. If contraction is restrained, the parts may be cracked or distorted because of the shrinkage stresses.

 When welding, the metals that are heated and cooled are not unrestrained since they are a part of a larger piece of metal which is not heated to the same temperature. Parts not heated or not heated as much tend to restrain that portion of the same piece of metal that is heated to a higher temperature. This non-uniform heating always occurs in welding. The restraint caused by the part being non-uniformly heated is the principal cause for the thermal distortion and warpages that occur in welding.

 Residual stresses that occur when metal is subjected to non-uniform temperature change are called thermal stresses. These stresses in weldments have two major effects: they produce distortion, and may cause premature failure in weldments.