Acetylene cylinders are part of many welding and cutting operations.

For welding purposes, acetylene is contained in three common cylinders with capacities of 1, 60, 100, and 300 cu ft. Acetylene must not be drawn off in volumes greater than 1/7 of the cylinder’s rated capacity.

In order to decrease the size of the open spaces in the cylinder, acetylene cylinders (fig. 5-6) are filled with porous materials such as balsa wood, charcoal, corn pith, or portland cement. Acetone, a colorless, flammable liquid, is added to the cylinder until about 40 percent of the porous material is saturated. The porous material acts as a large sponge which absorbs the acetone, which then absorbs the acetylene. In this process, the volume of acetone increases as it absorbs the acetylene, while acetylene, being a gas, decreases in volume.Acetylene Cylinders : construction


Acetylene, stored in a free state under pressure greater than 15 psi (103.4 kPa), can break down from heat or shock, and possibly explode. Under pressure of 29.4 psi (203) kPa), acetylene becomes self-explosive, and a slight shock can cause it to explode spontaneously.


Although acetylene is nontoxic, it is an anesthetic, and if present in a sufficiently high concentration, is an asphyxiant in that it replaces oxygen and can produce suffocation.

Acetylene is a colorless, flammable gas composed of carbon and hydrogen, manufactured by the reaction of water and calcium carbide. It is slightly lighter than air. Acetylene burns in the air with an intensely hot, yellow, luminous, smoky flame.

Although acetylene is stable under low pressure, if compressed to 15 psi (103.4 kPa), it becomes unstable. Heat or shock can cause acetylene under pressure to explode. Avoid exposing filled cylinders to heat, furnaces, radiators, open fires, or sparks (from a torch). Avoid striking the cylinder against other objects and creating sparks. To avoid shock when transporting cylinders, do not drag, roll, or slide them on their sides. Acetylene can be compressed into cylinders when dissolved in acetone at pressures up to 250 psi (1724 kPa).


Do not fill acetylene cylinders at a rate greater than 1/7 of their rated capacity, or about 275 cu ft per hour. To prevent drawing off of acetone and consequent impairment of weld quality and damage to the welding equipment, do not draw acetylene from a cylinder at continuous rates in volumes greater than 1/7 of the rated capacity of the cylinder, or 32.1 cu ft per hour. When more than 32.1 cu ft per hour are required, the cylinder manifold system must be used.

Acetylene cylinders are equipped with safety plugs (fig. 5-6) which have a small hole through the center. This hole is filled with a metal alloy which melts at approximately 212°F (100°C), or releases at 500 psi (3448 kPa). When a cylinder is overheated, the plug will melt and permit the acetylene to escape before dangerous pressures can be developed. The plug hole is too small to permit a flame to burn back into the cylinder if escaping acetylene is ignited.

The brass acetylene cylinder valves have squared stainless steel valve stems. These stems can be fitted with a cylinder wrench and opened or closed when the cylinder is in use. The outlet of the valve is threaded for connection to an acetylene pressure regulator by means of a union nut. The regulator inlet connection gland fits against the face of the threaded cylinder connection, and the union nut draws the two surfaces together. Whenever the threads on the valve connections are damaged to a degree that will prevent proper assembly to the regulator, the cylinder should be marked and set aside for return to the manufacturer.


Acetylene which may accumulate in a storage room or in a confined space is a fire arid explosion hazard. All acetylene cylinders should be checked, using a soap solution, for leakage at the valves and safety fuse plugs.

A protective metal cap (fig. 5-6) screws onto the valve to prevent damage during shipment or storage.

Acetylene, when used with oxygen, produces the highest flame temperature of any of the fuel gases. It also has the most concentrated flame, but produces less gross heat of combustion than the liquid petroleum gases and the synthetic gases.