Welding medium carbon steels

Medium carbon steels are non-alloy steels which contain from 0.30 to 0.55 percent carbon. These steels may be heat treated after fabrication and used for general machining and forging of parts which require surface hardness and strength. They are manufactured in bar form and in the cold rolled or the normalized and annealed condition. When heat treated steels are welded, they should be preheated from 300 to 500°F (149 to 260°C), depending on the carbon content (0.25 to 0.45 percent) and the thickness of the steel. The preheating temperature may be checked by applying a stick of 50-50 solder (melting point 450°F (232°C)) to the plate at the joint, and noting when the solder begins to melt. During welding, the weld zone will become hardened if cooled rapidly, and must be stress relieved after welding.

Medium carbon steels may be welded with any of the arc, gas, and resistance welding processes.

Medium carbon steels with higher carbon and manganese content, the low-hydrogen type electrodes should be used, particularly in thicker sections. Electrodes of the low-carbon, heavy coated, straight or reverse polarity type, similar to those used for metal-arc welding of low carbon steels, are satisfactory for welding medium carbon steels.

Small medium carbon steel parts should be annealed to induce softness before welding. The parts should be preheated at the joint and welded with a filler rod that produces heat treatable welds. After welding, the entire piece should be heat treated to restore its original properties.

Either a low carbon or high strength rod can be used for welding medium carbon steels. The welding flame should be adjusted to slightly carburizing, and the puddle of metal kept as small as possible to make a sound joint. Welding with a carburizing flame causes the metal to heat quickly, because heat is given off when steel absorbs carbon. This permits welding at higher speeds.

Care should be taken to slowly cool the medium carbon steel parts after welding to prevent cracking of the weld. The entire welded part should be stress relieved by heating to between 1100 and 1250°F (593 and 677°C) for one hour per inch (25.4 mm) of thickness, and then slowly cooling. Cooling can be accomplished by covering the parts with fire resistant material or sand.

Medium carbon steels can be brazed by using a preheat of 200 to 400°F (93 to 204°C), a good bronze rod, and a brazing flux. However, these steels are better welded by the metal-arc process with mild steel shielded arc electrodes.

When welding mild steels, keep the following general techniques in mind:

The plates should be prepared for welding in a manner similar to that used for welding low carbon steels. When welding with low carbon steel electrodes, the welding heat should be carefully controlled to avoid overheating the weld metal and excessive penetration into the side walls of the joint. This control is accomplished by directing the electrode more toward the previously deposited filler metal adjacent to the side walls than toward the side walls directly. By using this procedure, the weld metal is caused to wash up against the side of the joint and fuse with it without deep or excessive penetration.

High welding heats will cause large areas of the base metal in the fusion zone adjacent to the welds to become hard and brittle. The area of these hard zones in the base metal can be kept to a minimum by making the weld with a series of small string or weave beads, which will limit the heat input. Each bead or layer of weld metal will refine the grain in the weld immediately beneath it, and will anneal and lessen the hardness produced in the base metal by the previous bead.

  •  When possible, the finished joint should be heat treated after welding. Stress relieving is normally used when joining mild steel, and high carbon alloys should be annealed.
  •  In welding medium carbon steels with stainless steel electrodes, the metal should be deposited in string beads in order to prevent cracking of the weld metal in the fusion zone. When depositing weld metal in the upper layers of welds made on heavy sections, the weaving motion of the electrode should not exceed three electrode diameters.
  • Each successive bead of weld should be chipped, brushed, and cleaned prior to the laying of another bead.