Forehand welding describes the travel angle or direction of travel.

Work angle is the angle that the electrode, or center line of the welding gun, makes with the referenced plane or surface of the base metal in a plane perpendicular to the axis of a weld. Figure 6-38 shows the work angle for a fillet weld and a groove weld. For pipe welding, the work angle is the angle that the electrode, or center line of the welding gun, makes with the referenced plane or surface of the pipe in a plane extending from the center of the pipe through the puddle.

Travel angle is the angle that the electrode, or center line of the welding gun, makes with a reference line perpendicular to the axis of the weld in the plane of the weld axis. Figure 6-39 illustrates the travel angle for fillet and groove welds. For pipe welding, the travel angle is the angle that the electrode, or center line of the welding gun, makes with a reference line extending from the center of the pipe through the arc in the plane of the weld axis. The travel angle is further described as a drag angle or a push angle. Figure 6–39 shows both drag angles and push angles. The push angle, which points forward in the direction of travel, is also known as forehand welding.

Forehand welding : work angle : fillet and groove weld

Forehand welding : travel angle

 In forehand welding, the welding rod precedes the torch. The torch is held at an approximately 30 degree angle from vertical, in the direction of welding as shown in figure 6-40. The flame is pointed in the direction of welding and directed between the rod and the molten puddle. This position permits uniform preheating of the plate edges immediately ahead of the molten puddle. By moving the torch and the rod in opposite semicircular paths, the heat can be carefully balanced to melt the end of the rod and the side walls of the plate into a uniformly distributed molten puddle. The rod is dipped into the leading edge of the puddle so that enough filler metal is melted to produce an even weld joint. The heat reflected backwards from the rod keeps the metal molten. The metal is distributed evenly to both edges being welded by the motion of the tip and rod.

Forehand welding. This method is satisfactory for welding sheets and light plates in all positions. Some difficulties are encountered in welding heavier plates for the reasons given below:

In forehand welding, the edges of the plate must be beveled to provide a wide V with a 90 degree included angle. This edge preparation is necessary to insure satisfactory melting of the plate edges, good penetration, and fusion of the weld metal to the base metal. Because of this wide V, a relatively large molten puddle is required. It is difficult to obtain a good joint when the puddle is too large.