Flash welding is a resistance welding process which produces coalescence simultaneously over the entire area of abutting surfaces by the heat obtained from resistance to electric current between the two surfaces, and by the application of pressure after heating is substantially completed. Flashing and upsetting are accompanied by expulsion of metal from the joint. This is shown by figure 10-78. During the welding operation, there is an intense flashing arc and heating of the metal on the surfaces abutting each other. After a predetermined time, the two pieces are forced together and joining occurs at the interface. Current flow is possible because of the light contact between the two parts being flash welded. Heat is generated by the flashing and is localized in the area between the two parts. The surfaces are brought to the melting point and expelled through the abutting area. As soon as this material is flashed away, another small arc is formed which continues until the entire abutting surfaces are at the melting temperature. Pressure is then applied. The arcs are extinguished and upsetting occurs.

Flash welding

Flash welding can be used on most metals. No special preparation is required except that heavy scale, rust, and grease must be removed. The joints must be cut square to provide an even flash across the entire surface. The material to be welded is clamped in the jaws of the flash welding machine with a high clamping pressure. The upset pressure for steel exceeds 10,000 psi (68, 950 kPa). For high-strength materials, these pressures may be doubled. For tubing or hollow members, the pressures are reduced. As the weld area is more compact, upset pressures are increased. If insufficient upset pressure is used, a porous low strength weld will result. Excess upset pressure will result in expelling too much weld metal and upsetting cold metal. The weld may not be uniform across the entire cross section, and fatigue and impact strength will be reduced. The speed of upset, or the time between the end of flashing period and the end of the upset period, should be extremely short to minimize oxidation of the molten surfaces. In the flash welding operation, a certain amount of material is flashed or burned away. The distance between the jaws after welding compared to the distance before welding is known as the burnoff. It can be from 1/8 in. (3.2 mm) for thin material up to several inches for heavy material. Welding currents are high and are related to the following: 50 kva per square in. cross section at 8 seconds. It is desirable to use the lowest flashing voltage at a desired flashing speed. The lowest voltage is normally 2 to 5 volts per square in. of cross section of the weld.  The upsetting force is usually accomplished by means of mechanical cam action. The design of the cam is related to the size of the parts being welded. Flash welding is completely automatic and is an excellent process for mass-produced parts. It requires a machine of large capacity designed specifically for the parts to be welded. Flash welds produce a fin around the periphery of the weld which is normally removed.