Arc Welding Definition. In the arc welding process, the weld is produced by the extreme heat of an electric arc drawn between an electrode and the workpiece, or in some cases, between two electrodes. Welds are made with or without the application of pressure and with or without filler metals. Arc welding processes may be divided into two classes based on the type of electrode used: metal electrodes and carbon electrodes.

Metal electrodes. Arc welding processes that fall into this category include bare metal-arc welding, stud welding, gas shielded stud welding, submerged arc welding, gas tungsten arc welding, gas metal-arc welding, shielded metal-arc welding, atomic hydrogen welding, arc spot welding, and arc seam welding.

Carbon electrodes. Arc welding processes that fall into this category include carbon-arc welding, twin carbon-arc welding, gas carbon-arc welding, and shielded carbon-arc welding.

Weld Metal Deposition.

(1) In metal-arc welding, a number of separate forces are responsible for the transfer of molten filler metal and molten slag to the base metal. These forces are described in (2) through (7) below.

(2) Vaporization and condensation. A small part of the metal passing through the arc, especially the metal in the intense heat at the end of the electrode, is vaporized. Some of this vaporized metal escapes as spatter, but most of it is condensed in the weld crater, which is at a much lower temperature. This occurs with all types of electrodes and in all welding positions.

(3) Gravity. Gravity affects the transfer of metal in flat position welding. In other positions, small electrodes must be used to avoid excessive loss of weld metal, as the surface tension is unable to retain a large amount of molten metal in the weld crater.

(4) Pinch effect. The high current passing through the molten metal at the tip of the electrode sets up a radial compressive magnetic force that tends to pinch the molten globule and detach it from the electrode.

(5) Surface tension. This force holds filler metal and the slag globules in contact with the molten base or weld metal in the crater. It has little to do with the transfer of metal across the arc, but is an important factor in retaining the molten weld metal in place and in the shaping of weld contours.

(6) Gas stream from electrode coatings. Gases are produced by the burning and volatilization of the electrode covering and are expanded by the heat of the boiling electrode tip. The velocity and movement of this gas stream give the small particles in the arc a movement away from the electrode tip and into the molten crater on the work.

(7) Carbon monoxide evolution from electrode. According to this theory of metal movement in the welding arc, carbon monoxide is evolved within the molten metal at the electrode tip, causing miniature explosions which expel molten metal away from the electrode and toward the work. This theory is substantiated by the fact that bare wire electrodes made of high purity iron or “killed steel” (i.e., steel that has been almost completely deoxidized in casting) cannot he used successfully in the overhead position. The metal transfer from electrode to the work, the spatter, and the crater formation are, in this theory, caused by the de-carburizing action in molten steel.

Arc Crater. Arc craters are formed by the pressure of expanding gases from the electrode tip (arc blast), forcing the liquid metal towards the edges of the crater. The higher temperature of the center, as compared with that of the sides of the crater, causes the edges to cool first. Metal is thus drawn from the center to the edges, forming a low spot.